数学教学计划

时间:2024-10-13 04:41:55 教学计划 我要投稿

【实用】数学教学计划锦集7篇

  时光在流逝,从不停歇,我们又将迎来新的教学工作,我们要好好计划今后的教育教学方法。怎样写教学计划才更能吸引眼球呢?下面是小编为大家收集的数学教学计划7篇,欢迎阅读与收藏。

【实用】数学教学计划锦集7篇

数学教学计划 篇1

  本学期担任高一(9)(10)两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了必须的难度,为把本学期教学工作做好,制定如下教学工作计划。

  一、指导思想:

  使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。透过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本潜力。

  3.提高数学地提出、分析和解决问题(包括简单的实际问题)的潜力,数学表达和交流的潜力,发展独立获取数学知识的潜力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的.一些数学模式进行思考和作出决定。

  5.提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。

  6.具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学好处,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、教学目标.

  (一)情意目标

  (1)透过分析问题的方法的教学,培养学生的学习的兴趣。

  (2)带给生活背景,透过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维潜力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

  (二)潜力要求

  1、培养学生记忆潜力。

  (1)透过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (3)透过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆潜力。

  2、培养学生的运算潜力。

  (1)透过概率的训练,培养学生的运算潜力。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算潜力。

  (3)透过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性潜力。

  (4)透过一题多解、一题多变培养正确、迅速与合理、灵活的运算潜力,促使知识间的透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算潜力。

数学教学计划 篇2

  一、学生情况:

  从上学期的教学观察与测试结果看,这两个班学生的学习态度较端正,基础差,跟不上教学进度的多。受应试教育观念的影响,师生习惯于接受性学习,自主、合作、探究的风气尚未形成。作业习惯抄袭,勤思好问的少。从抽查的情况看,学生对要理解记忆的知识掌握得不够好,读题、理解题意的能力弱,综合分析题目信息,确定解题思路、方法的经验不足,答题书写随意,格式不规范。上学期期末考试班级成绩差距不大,优秀率比期中考试大大提升。为此新学期的数学教学要积极尝试自主、合作、探究学习,注意培养学生的.学习兴趣和习惯品质,努力提高综合成绩,争取更大的提高。

  二、教材情况:

  本学期是本年级学生三年级学习阶段的第二学期。新授课程主要有相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组、数据的收集、整理与描述。现行教材、教学大纲要求学生从身边的实际问题出发,乘坐"观察"、"思考"、"探究"、"讨论"、"归纳"之舟,去探索、发现数学的奥妙,用学到的本领去解决"复习巩固"、"综合运用"、"拓展探索"等不同层次的问题。教师在灵活选用现有教材的基础上,应适度引用新例,把三年级数学各单元的知识明晰化、条理化、规律化,激励学生自主、合作、探究学习,培养学习兴趣和习惯品质。

  三、教学目标

  知识技能目标:学习平行线的有关知识,掌握平面直角坐标系的画法,学会二元一次方程组、不等式及不等式组的解法,能够绘制简单的统计图表。同时进一步提高学生几何作图能力。过程方法目标:学会观察和分析几何图形,发现图形的特征和图形之间存在的关联,学会总结规律。初步建立方程思想,学会使用代数式表示数量及数量之间的关系。态度情感目标:认识生活,感知生活,领悟数学是为生活服务。班级教学目标:优秀率:35%;合格率:60%。

  四、教学措施

  1、认真研读新课程标准,钻研教材,精选习题,精心备课,做好教案,上好新课。同时仔细批改作业,作好辅导,发现问题及时解决作认真总结成功与失败的经验和原因。

  2、充分利用现代化教学设施制作教学道具,设置教学情境,结合日常生活,由浅入深,循序渐进。引导学生主动加入课堂学习和讨论,积极参与知识的探究与规律的总结。

  3、营造民主、和谐、平等、自主的学习氛围,引导学生进行合作探究、交流和分享发现的快乐。从而体会到学习的乐趣,激发学生的学习热情。

  4、精心设计探究主题,引导学生学会发散思维,培养学生创造性思维的能力,实现一题多解、举一反三、触类旁通。

  5、开展分层教学模式,成立互助学习小组,以优带良,以优促后。同时狠抓中等生,辅导后进生,实现共同进步。

数学教学计划 篇3

  一、教材编排特点及重点训练项目

  新的学期,本册教材对于教学内容的编排和处理,是以整套实验教材的编写思想、编写原则等为指导,力求使教材的结构符合教育学、心理学的原理和学生的年特征,继续体现前几册实验教材中的风格与特点。本册教材仍然具有内容丰富、关注学生的经验与体验、体现知识的形成过程、鼓励算法及解决问题的策略多样化、改变学生的学习方式,体现开放性的教学方法等特点。同时,由于教学内容的不同,本册教材还具有下面几个明显的特点。

  1、改进小数乘、除法计算的编排,体现计算教学改革的理念,培养学生的数学素养。

  2、改进简易方程的教学安排,加强了探索性和开放性,发展学生的数学思维能力。

  3、提供丰富的空间与图形的教学内容,注重动手实践与自主探索,促进学生空间观念的发展。

  4、加强统计与概率内容的教学,发展学生的统计观念,逐步形成从数学的角度进行思考问题的思维习惯。

  5、有步骤地渗透数学思想方法,培养学生数学思维能力和解决问题的能力。

  6、情感、态度、价值观的培养渗透于教学中,用数学的魅力的和学习的收获激发学生的学习兴趣与内在动机。

  重点训练项目:1.小数乘、除法;2.简易方程;3.多边形的面积。

  二、学生学情

  因为新学期本班学生我还不是很了解,我想在不久的将来,我会摸熟摸透的。我会尽量调动学生的学习兴趣,让学生主动积极地学习数学,养成良好的学习习惯。

  本期重点是进一步培养和提高学生的合作能力;提高学生提出问题、分析问题、解决问题的能力。同时继续培养学生的良好的学习习惯。

  三、教学目标

  1、比较熟练地进行小数乘法和除法的笔算。

  2、在具体情境中会用字母表示数,理解等式的`性质,会用等式的性质解简易的方程,用方程表示简单情境中的等量关系并解决问题。

  3、探索并掌握平行四边形、三角形、梯形的面积公式。

  4、能辨认从不同方位看到的物体的形状和相对位置。

  5、理解中位数的意义,会求数据的中位数。

  6、体验事件发生的等可能性以及游戏规则的公平性,会求一些事件引起的可能性;能对简单事件发生的可能性性作出预测,进一步体会概率在现实生活中的作用。

  7、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

  8、初步了解数字编码的思想方法,培养发现生活中的数学的意识,初步形成观察、分析及推理的能力。

  9、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

  10、养成认真作业、书写整洁的良好习惯。

  四、创新教学设计

  1、转变观念,采用'激励性、自主性、创造性'教学策略,以问题为线索,恰当运用教材、媒体、现实材料突破重点、难点,变多讲多练,为精讲精练,真正实现师生互动、生生互动,从而调动学生积极主动学习,提高教与学的效益。

  2.不增减课程和课时,不提高要求,不购买其他复习资料,不留机械、重复、惩罚性作业和作业总量不超过规定时间,

  3.通过教学,对学生的学习态度和学习方法、学习纪律等方面提出始终一贯,科学而严格的要求。

  4.转变教学方法。在数学教学中,教师必须将'重视结论'的教学转变为'重视过程'的教学,注重再现知识产生、形成的过程,引导学生去探索、去发现。

  5.在课堂上开展小组合作学习,让学生在一起摆摆、拼拼、说说,让学生畅所欲言,互相交流,减少学生的心理压力,充分发挥学生的主题性,培养学生的创新意识和实践能力。

  6.在教学中注意采用开放式教学,培养学生根据具体情境选择适当方法解决实际问题的意识。如通过一题多解、一题多变、一题多问、一题多编等途径,拓宽学生的知识面,沟通知识之间的内在联系,培养学生的应变能力。

  五、教学进度:

  第1周:P1-7第11周:期中测试

  第2周:P8-14第12周:P68-74

  第3周:P15-21第13周:P75-81

  第4周:P22-28第14周:P82-88

  第5周:P29-32第15周:P89-95

  第6周:P33-39第16周:P96-102

  第7周:P40-46第17周:P103-109

  第8周:P47-53第18周:P110-119

  第9周:P54-60第19周:期末复习

  第10周:P61-67第20周:期末复习

  第21周:期末考试

数学教学计划 篇4

  一、指导思想

  根据义务教育数学课程标准的基本理念,数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的思维能力和创新能力方面的不可替代的作用。让学生在数学学习中体会数学的价值,增强理解数学和应用数学的信心;初步学会运用数学的思维方式去观察和分析现实社会、去解决日常生活中的问题,进而形成勇于探索、勇于创新的科学精神;获得适应未来社会生活和进一步发展所必需的数学知识和必要的应用技能。

  二、学情分析

  在经过了一学年的数学学习后,基本知识、技能方面基本上已经达到学习的目标,对学习数学有着一定的兴趣,乐于参加学习活动中去。特别是一些动手操作、需要合作完成的学习内容都比较感兴趣。但是对于计算还是会出现个别偏慢,易出错等粗心问题.在遇到思考深度较难的问题时,有依赖心理,畏难情绪。这个学期我应该使已经基本形成的兴趣再接再厉的保持,并逐步引导思维的发展、成功体验所获得的乐趣。 本学期要继续抓好养成教育,使全体学生都能得到不同水平、不同程度的发展和提高,以培养学生的学习兴趣为工作重心。

  三、教材分析

  本学期教材内容包括下面一些内容:长度单位, 100以内的加减法,角的初步认识,表内乘法,观察物体,认识时间,数学广角(搭配一)和数学实践活动量一量比一比。

  四、 教学目标

  (一)知识和技能方面

  1、初步认识长度单位厘米和米,初步建立1米、1厘米的长度观念,知道1米=100厘米;初步学会用刻度尺量物体的长度(限整厘米);初步形成估计物体长度的意识。

  2、掌握100以内笔算加、减法的计算方法,能够正确地进行计算。初步掌握100以内笔算加、减法的估算方法,体会估算方法的多样性。

  3、初步认识线段,会量整厘米线段的长度;初步认识角和直角,知道角的各部分名称,会用三角板判断一个角是不是直角;初步学会画线段、角和直角。

  4、知道乘法的含义和乘法算式中各部分的名称,熟记全部乘法口诀,熟练地口算两个一位数相乘。

  5、能辨认从不同的位置观察到的简单物体的形状。

  6、使学生会读写几时几分,初步建立时间观念。使学生知道“l时=60分”,学会一些有关时间的简单计算。

  (二)数学思考方面

  通过结合学生日常生活中的简单事例,让学生运用操作、实验、猜测等直观手段解决问题,向学生渗透简单排列与组合的数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。

  (三)解决问题方面

  1、经历从生活中发现并提出问题、解决问题的过程,体验数学与日常生活的密切联系,感受数学在日常生活中的作用。

  2、了解同一问题可以有不同的解决办法。

  3、有与同学合作解决问题的经验。

  4、初步学会表达解决问题的大致过程和结果。

  (四)情感与态度方面

  1、在他人的'鼓励和帮助下,对身边与数学有关的某些事物有好奇心,能积极参与生动、直观的教学活动。

  2、在他人的鼓励和帮助下,能克服在数学活动中遇到的某些困难,获得成功的体验,有学好数学的信心。

  3、经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性。

  4、在他人的指导下,能够发现数学活动中的错误,并及时改正。

  5、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

  6、养成认真作业、书写整洁的良好习惯。

  7、通过实践活动,体验数学与日常生活的密切联系。

  五、教学措施

  1、从整体上把握教学目标。根据课程标准,结合具体的教学内容准确把握教学的深度,防止加重学生的学习负担。

  2、体现学生的主体性,注重学法渗透。教师要把课堂中更多的时间留给学生探索、交流和练习。

  3、注意培养学生的语言表达能力和逻辑思维能力。重视让学生体验知识的形成过程。

  4、注重培养学生的计算能力和解决问题的能力。努力将学生所学的数学知识与学生的生活和学习中的实际问题联系起来。激发起学生对数学的兴趣,培养学以致用的意识。

  5、注意适当渗透一些数学的思想和方法,以利于学生对某些数学内容的理解。

  6、注意教学的开放性,培养学生的创新意识和实践能力。课本中的一些例题和习题的编排,突出了思考过程,教师在教学时,要引导学生暴露思维过程,鼓励学生多角度思考问题。

  7、精心设计教案,注重多媒体的应用,使学生学得愉快,学得轻松,觉得扎实。

  8、渗透德育,注重培养学生良好的学习习惯和独立思考、克服困难的精神。

数学教学计划 篇5

  Ⅰ.教学内容解析

  本节课的教学内容,是指数函数的概念、性质及其简单应用.教学重点是指数函数的图像与性质.

  这是指数函数在本章的位置.

  指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数.它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践.指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础.因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程.

  指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义.

  Ⅱ.教学目标设置

  1.学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念.

  2.学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小.

  3.学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法.

  4.在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力.

  Ⅲ.学生学情分析

  授课班级学生为南京师大附中实验班学生.

  1.学生已有认知基础

  学生已经学习了函数的概念、图象与性质,对函数有了初步的认识.学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力.学生已有研究一次函数、二次函数等初等函数的直接经验.学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯.

  2.达成目标所需要的认知基础

  学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力.

  3.难点及突破策略

  难点:1. 对研究函数的一般方法的认识.

  2. 自主选择底数不当导致归纳所得结论片面.

  突破策略:

  1.教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段.

  2.组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思.

  3.对猜想进行适当地证明或说明,合情推理与演绎推理相结合.

  Ⅳ.教学策略设计

  根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式.通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段.

  学生的自主学习,具体落实在三个环节:

  (1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念.

  (2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升.

  (3)性质应用阶段,学生自主举例说明指数函数性质的应用.

  研究函数的性质,可以从形和数两个方面展开.从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明.

  Ⅴ.教学过程设计

  1.创设情境建构概念

  师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系.你能用函数的观点分析下面的例子吗?

  师:大家知道细胞分裂的规律吗?(出示情境问题)

  [情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的关系?

  [情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%.如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系?

  [师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=0.84x.

  师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗?

  〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?

  [设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系.引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示.初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构.指数范围扩充到实数后,关注x∈R时,y=ax是否始终有意义,因此规定a>0.a≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义.为了使指数函数与对数函数能构成反函数,规定a≠1.此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”.

  [师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax.

  [教学预设]学生能举出具体的例子——y=3x,y=0.5x….如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现.进而提出这类函数一般形式y=ax.

  方案1:

  生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))

  师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)

  生:函数y=0.5x,y= x,y=(-2)x,y=1x…

  师:板书学生举例(停顿),好像有不同意见.

  生:底数不能取负数.

  师:为什么?

  生:如果底数取负数或0,x就不能取任意实数了.

  师:我们已经将指数的取值范围扩充到了R,我们希望这些函数的定义域就是R.

  (若没有学生注意到底数的取值范围,可引导学生关注例举函数的定义域.若有同学提出情境中函数的定义域应为N+,师:我们已经将指数的取值范围扩充到了R,函数y=2x和y=0.84x中,能否将定义域扩充为R?你们所举的例子中,定义域是否为R?)

  师:这些函数有什么共同特点?

  生:都有指数运算.底数是常数,自变量在指数位置.

  (若有学生举出类似y=max的例子,引导学生观察,它依然具有自变量在指数位置的特征.而刻画这一特点的最简单形式就是y=ax,从而初步建立函数模型y=ax,初步体会基本初等函数的作用.)

  师:具备上述特征的函数能否写成一般形式?

  生:可以写成y=ax(a>0).

  师:当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)

  方案2:

  生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))

  师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)

  生:函数y=0.5x,y= x,…

  师:这些函数的自变量是什么?它们有什么共同特点?

  生:(可用文字语言或符号语言概括)都有指数运算.底数是常数,自变量在指数位置.可以写成y=ax.

  师:y=ax中,自变量是x,底数a是常数.以上例子的不同之处,是底数不同.那你觉得底数的取值范围是什么呢?

  生:底数不能取负数.

  师:为什么?

  生:如果底数取负数或0,x就不能取任意实数了.

  师:为了研究的方便,我们要求底数a>0.当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)

  [阶段小结]一般地,函数y=ax(a>0且a≠1)称为指数函数.它的定义域是R.

  [意图分析]概念教学应当让学生感受形成过程,了解知识的来龙去脉,那种直接抛出定义后辅以“三项注意”的`做法剥夺了学生参与概念形成的过程.此处不宜纠缠于y=22x是否为指数函数等细枝末节.指数函数的基本特征是自变量出现在指数上,应促使学生对概念本质的理解.指数函数概念的形成,经历了一个由粗到细,由特殊到一般,由具体到抽象的渐进过程,这样更加符合人们的认知心理.

  2.实验探索汇报交流

  (1)构建研究方法

  师:我们定义了一个新的函数,接下来,我们研究什么呢?

  生:研究函数的性质.

  〖问题2你打算如何研究指数函数的性质?

  [设计意图]学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.在此认知基础上,引导学生自己提出所要研究的问题,寻找研究问题的方法.开始的问题较宽泛,教师要缩小问题范围,用提示语口头提问启发.教师应充分尊重学生的思维个性,提供自主探究的平台,通过汇报交流活动达成共识实现殊途同归.中学阶段,特别是高一新授课阶段,提倡学生以形象思维作为抽象思维的支撑.

  [师生活动]师生经过讨论,解决启发性提示问题,确定研究的内容与方法.

  [教学预设]学生能够根据已有知识和经验,在教师的启发引导下,明确研究的内容以及研究的方法.部分学生会提出先作出具体函数图象,观察图象,概括性质,并进而归纳出一般函数的图象的分布特征等性质.另一部分学生可能从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.

  师:(稍等片刻)我们一般要研究哪些性质呢?

  生:变量取值范围(定义域、值域)、单调性、奇偶性.

  师:(板书学生回答)怎样研究这些性质呢?

  生:先画出函数图象,观察图象,分析函数性质.

  生:先研究几个具体的指数函数,再研究一般情况.

  师:板书“画图观察”,“取特殊值”

  (若没有学生提出从特殊到一般的思路.师:底数a的取值不同,函数的性质可能也会有不同.一次函数y=kx(k≠0)中,一次项系数k不同,函数性质就不同.底数a可以取无数多个值,那我们怎么办呢?)

  (若有学生通过对y=2x解析式的分析,得到了性质,并提出从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.师:你的想法也很有道理,不妨试一试.(仍引导学生从具体指数函数图象入手.))

  [意图分析]学习的过程就是一个不断地提出问题、解决问题的过程.提出问题比解决问题更重要,给学生提供由自己提出问题、确定研究方法的机会,逐渐学会研究问题,促进能力发展.

  (2)自主探究汇报交流

  师:我们确定了要研究的对象和具体做法,下面可以开始研究指数函数的性质了.

  〖问题3选取数据,画出图象,观察特点,归纳性质.

  [设计意图]若直接规定底数取值,对于为什么要以y=2x,y=3x,y=0.5x为例,为什么要根据底数的大小分类讨论,缺乏合理的解释,学生对于图象的认识是被动的.若在探究前经讨论确定底数取值,由于学生认知水平的差异,仍可能会造成部分学生被动接受.学生自主选择底数,虽有得到片面认识的可能,但通过讨论交流,学生能相互验证结论,仍能得到正确认识.并且学生能在过程中体会数据如何选择,了解研究方法.

  由于描点作图时列举点的个数的限制,学生对x→∞时函数图象特征缺乏直观感受.而且由于所举例子个数的限制,学生对于归纳的结论缺乏一般性的认识.教师应利用绘图软件作出底数连续变化的图象 ,验证猜想.

  数形结合、从特殊到一般的思维方法是概括归纳抽象对象的一般思维方法,本节课的重点是通过对指数函数图象性质的研究,总结研究函数的一般方法,应充分发动学生参与研究的每个过程,得到直接体验.

  [师生活动]学生选取不同的a的值,作出图象,观察它们之间的异同,总结指数函数的图象特征与函数性质.

  [教学预设]学生通过观察图象,发现指数函数y=ax(a>0且a≠1)的性质.教师用实物投影仪展示学生所画图象,学生根据具体函数图象说明具体函数性质.在学生说明过程中,教师引导学生对结论进行适当的说明,进而引导学生归纳一般指数函数的性质.教师引导学生关注列表描点作图的过程,引导学生通过反思过程,并通过动态图象验证猜想,促进学生体会数形结合的分析方法.教师尊重生成,但需引导学生区别指数函数本身的性质与指数函数之间的性质.其中⑥⑦不强加于学生.对于⑥,要引导学生在同一坐标系中画出图象,启发学生观察底数互为倒数的指数函数的图象,先得到具体的例子.对于⑦,在例1第3小题中,会有学生提出利用不同底数指数函数图象解决,可顺势利导,也可布置为课后作业,继续研究.

  生:自主选择数据,在坐标纸上列表作图,列出函数性质.

  师:(巡视,必要时参与讨论,及时提示任务,待大部分学生有结论后,鼓励学生交流,请学生汇报.)有条理地整理一下结论,讨论交流所得.(同时用实物投影仪展示学生所画图象.若没有投影仪,用几何画板作出图象.)

  生:(可能出现的情况)(1)在两个坐标系中画图;(2)所取底数均大于1;(3)两个底数大于1,一个底数小于1;(4)关于y轴对称的两个指数函数.

  师:(过程性引导)底数你是怎么取的?你是怎样观察出结论的?在列表过程中,你有什么发现吗?为什么要在两个坐标系中画图?为什么不也取两个底数小于1?

  师:(用彩笔描粗图象,故意出错)错在哪里?为什么?

  生:指数函数是单调递增的,过定点(0, 1).

  师:(引导学生规范表述,并板书)指数函数在(-∞, +∞)上单调递增,图象过定点(0, 1).

  师:指数函数还有其它性质吗?

  师:也就是说值域为(0, +∞).

  生:指数函数是非奇非偶函数.

  师:有不同意见吗?

  生:当0

  (其它预设:

  (1)当a>1时,若x>0,则y>1;若x<0,则y<1.

  当00,则y<1;若x<0 y="">1.

  (2)学生画出y=2x和y=3x图象,得出函数递增速度的差异.

  (3)画出y=2x和y=0.5x图象,得到底数互为倒数的指数函数图象关于y轴对称.)

  师:(板书学生交流结果,整理成表格.注意区分“函数性质”与“函数之间的关系”.若有学生试图说明结论的合理性,可提供机会.)大家认为底数a>1或0

  [阶段小结] 指数函数y=ax(a>0且a≠1)具有以下性质:

  ①定义域为R.

  ②值域为(0, +∞).

  ③图象过定点(0, 1).

  ④非奇非偶函数.

  ⑤当a>1时,函数y=ax在(-∞, +∞)上单调递增;

  当0

  ⑥函数y=ax与y=()x (a>0且a≠1)图象关于y轴对称.

  ⑦指数函数y=ax与y=bx(a>b)的图象有如下关系:

  x∈(-∞, 0)时,y=ax图象在y=bx图象下方;

  x=0时,两图象相交;

  x∈(0,+∞)时,y=ax图象在y=bx图象上方.

  [意图分析]通过探究活动,使学生获得对指数函数图象的直观认识.学生观察图象,是对图形语言的理解;根据图象描述性质,是将图形语言转化为符号或文字语言.对函数的理解,是建立在三种语言相互转化的基础上的.在交流汇报过程中,一方面要通过对探究较深入学生的具体研究过程的剖析,总结提升学习方法,优化学习策略;另一方面要关注部分探究意识与能力都薄弱的学生的表现,鼓励他们大胆发言,激励他们主动参与活动,让全体学生成为真正的学习主体.自主探究活动能充分激发学生的相互学习能力,能有效帮助学生突破难点.

  3.新知运用巩固深化

  (方案一)(分析函数性质的用途)

  师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?

  师:函数的定义域是函数的基础,是运用性质的前提.值域是研究函数最值的前提.具备奇偶性的函数,可以利用对称性简化研究.指数函数过定点(0, 1),说明可以将常数1转化为指数式,即1=20=30=…那么函数单调性有什么用呢?

  生:可以求最值,可以比较两个函数值的大小.

  师:那你能举出运用指数函数单调性比大小的例子吗?(提示:既然是运用指数函数单调性,那应该有指数式.)

  生:(举例并判断大小.)

  师:你考察了哪个指数函数?怎么想到的?(规范表述)

  师:以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.(出示例1)

  (方案二)

  师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?

  师:(口述并板书)你能比较32与33的大小吗?

  生:直接计算比较.

  师:那比较30.2与30.3的大小呢?能不能不计算呢?

  生:利用函数y=3x的单调性.

  师:能具体说明吗?(引导学生规范表达)我们再试一试.

  (出示例1)

  【例1】比较下列各组数中两个值的大小:

  ①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.

  [设计意图] 引导学生运用指数函数性质.对于 32与33的大小比较,学生更可能计算出幂的值直接比较.变式后,学生可能作差或作商比较,转化为比较30.1与1的大小,进而运用指数函数单调性,也可能直接运用单调性.初步运用新知解决问题,注重题意理解,扩大知识迁移,感悟解题方法,达到对新知巩固记忆,加深理解.

  [师生活动]学生板演,教师组织学生点评.

  [教学预设] ①②两题,学生能运用指数函数单调性解决.②题学生可能得到错误答案,教师可组织相互点评,规范表达,正确运用性质.③学生可能运用不同方法,应给予充分的时间,并在具体问题解决后引导学生总结一般方法.

  师:(引导学生规范表达)你考察了哪个指数函数?根据函数的什么性质?

  师:(对③的引导)你考虑利用哪个函数?是y=1.5x还是y=0.8x?这两个函数有什么关联?(引导学生画出图象,从形上提示:图象有什么关联?)

  生:它们都过点(0, 1).

  师:也就是说,可以将1转化为指数形式,即1=1.50=0.80.那接下来呢?

  生:比较1.50.3,0.81.2和1的大小.

  师:我们找到了一个比大小的中间量.以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.

  【例2】

  ①已知3x≥30.5,求实数x的取值范围;

  ②已知0.2x<25,求实数x的取值范围.

  [设计意图]指数函数单调性的逆用,同时考查指数函数的定义域.

  4.概括知识总结方法

  〖问题4本节课我们学习了哪些知识?你还学会了哪些方法?

  [设计意图] 回顾所学内容,深化认知.开放式小结,不同学生有不同的收获.

  [师生活动]学生发言总结,交流所得.

  [教学预设]

  通过本节课对指数函数图象和性质的研究,我们获得了以下知识和方法:

  ①指数函数的定义与性质;

  ②研究函数的一般方法和步骤.

  师:本节课我们学习了什么知识?

  生:指数函数的定义和性质.

  师:回顾我们的研究过程,我们是怎样研究指数函数的?

  生:先确定研究的内容:定义域、值域、单调性、奇偶性和其它性质.

  生:然后从几个具体的指数函数开始,画出图象,列出性质,最后得到一般情况.

  师:这是一种从特殊到一般的研究方法.研究指数函数的方法,也是研究函数的一般方法,今后我们还会运用这样的方法研究新的函数.

  [意图分析]课堂总结不是对所学知识的简单回顾,应让学生在知识、方法和策略上多层次地整理,促进学生理解所用学习方法的合理性与普遍性,使学生获得知识与能力的共同进步.

  5.分层作业,因材施教

  (1)感受理解:课本第54页,习题2.2(2):1,2,3,4;

  (2)思考运用:运用今天的研究方法,你还能得到指数函数的其它性质吗?

  [设计意图]分层布置作业,“感受理解”面向全体学生,旨在掌握指数函数的图象与性质.“思考运用”提供学生运用函数研究的一般方法自主研究的机会.

  Ⅵ.教后反思回顾

  一、对于指数函数概念的认识

  指数函数是一种函数模型,其基本特征是自变量在指数位置.底数取值范围有规定,使得这一模型形式简单又不失本质.不必纠结于“y=22x是否为指数函数”,把重点放在概念的合理性的理解以及体会模型思想.

  二、对于培养学生思维习惯的考虑

  在学生自主探索的过程中,教师应注意培养学生良好的思维习惯.实际上,选择底数a的数据的大小和数量,需要对指数函数的性质有预判;从列表到作图的过程中,都可以感受到指数函数单调性等性质;观察并归纳性质,既需要特殊到一般的推理模式,也应养成有序进行观察和归纳的良好的思维习惯.对所归纳的指数函数的性质,应根据学生已有的知识水平或教学要求进行证明或合理的说明.学生不仅学到了数学知识,也初步体验了研究问题的基本方法.

  三、关于设计定位的反思

  本节课的教学设计,力图体现因材施教原则。不同的学情下,教师应采用不同的教学策略.如果学生基础相对薄弱,问题的提出可以分层次进行。另外,注意通过“你是怎么想的?”“你同意他的意见吗?为什么”等问话形式,促使学生暴露思维过程.、

数学教学计划 篇6

  一. 教学思想:

  教育学生掌握基础知识与基本技能

  培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

  二. 在教学过程中抓住以下几个环节

  (1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。

  (2) 抓住课堂45分钟,本学期的教学内容共三章

  第二十七章 一元二次方程的应用:

  (一) 列出一元二次方程解应用题

  (二)二次三项式的因式分解

  (三) 分式方程和无理方程

  (四) 简单的`二元二次方程组

  第二十八章相似形:

  (一)图形的放缩与比例线段

  (二)相似三角形

  第二十九章锐角三角比

  (一)锐角的三角比

  (二)解直角三角形的应用

  严格按照教学计划,备课组统一进度,统一练习,进行教学,精心设计每一节课的每一个环节,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量组织学生人人参与课堂活动,使每个学生积极主动参与课堂活动,使每个学生动手、动口、动脑,及时反馈信息提高课堂效益。

  (3)课后反馈。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。

  三. 不断钻研业务,提高业务能力及水平。

  积极参加业务学习,看书、看报,参加学校组织的培训,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更开拓,方法更灵活,手段更先进。

数学教学计划 篇7

  1、重视研究图形的特征,鼓励学生猜想和估计,加强操作,进一步发展学生的空间观念。

  第十册已经教学过长方体和正方体,它们都是由几个平面图形围成的几何体。本册教学两种新的立体图形:圆柱和圆锥。这两种立体图形都是含有曲面的几何体。教材教学时,同以前各册一样,重视加强学生的操作,发展学生的空间观念。教学每一种形体时,都引导学生先观察形体的特征,然后进行一些实验。

  教材鼓励学生联系已有知识对新学习的内容先猜一猜或估一估,在猜测或估计的基础上进行实验和推理,培养学生的学习能力。此外,本册教材在联系实际方面也有所加强。一方面在教学形体概念加强联系周围的实物,另一方面适当增加了实践活动和先测量物体再计算表面积或体积的练习题。

  2、加强看懂和分析简单统计图的训练,注意要求适当。

  本册教材继续加强看懂和分析简单统计图的训练,为此,例题中在统计图后面提出几个问题,让学生看图回答。有的练习题还专门安排看统计图回答问题。考虑到制作简单的统计图对小学生来说并不是很容易的,教材中一方面注意说明制作统计图的一般方法和步骤,另一方面在安排练习时基本上都安排半独立完成的。以免对制作统计图的要求过高。

  3、突出比例的概念,加强知识间的联系。

  正比例关系和反比例关系,实际上是一种函数关系。修订后的教材中,比例知识趋于简化,教学的重点是正、反比例的概念,用比例知识解应用题只保留一些较简单的。本册教材为了突出比例的概念的应用,作了以下几点改进:⑴把比例尺安排到比例的`概念教学之后教学,加强比例尺与比例概念的联系,这样既有助于学生加深理解比例的概念,又便于学生运用比例的知识和解比例的方法来解决有关比例尺的计算问题。

  ⑵教学正比例概念之后接着教学反比例概念并增加两个概念的联系和对比。⑶在比例知识解应用题的最后增加了用不同知识解的练习题。通过这样的教学,可以加强整数、分数运算和比例之间的联系,提高学生灵活运用知识解决实际问题的能力。

  4、加强数学知识的整理,使所学的数学知识系统化。

  本册教材的最后一个单元是总复习,把小学阶段所学的主要内容进行系统的整理和复习,使学生对所学的数学知识得到巩固和加深,计算能力得到进一步提高,更好地达到小学数学教学的目标。本册教材对这一单元的编写作了以下几点改进:

  ⑴把小学的数学内容分为整数和小数、简易方程、分数和百分数、量的计量、几何初步知识、比和比例、简单的统计七部分,依次分别复习。⑵在复习每一部分知识时,注意加强知识间的内在联系。⑶选用适当的方式帮助学生回忆并整理所学的数学基础知识。⑷在练习中既注意基本的训练,又注意适当加强灵活和综合运用知识的练习,以利于进一步提高学生的计算能力和解题能力。

  5、继续加强能力的培养

  本册教材继续加强能力的培养,做法与前几册基本相同,另外还结合本册特点加强灵活运用知识和综合运用知识的能力的培养。

  ⑴培养分析、比较和综合能力。⑵培养抽象、概括能力。⑶培养判断、推理能力。⑷培养迁移类推能力。⑸培养学生思维的灵活性和敏捷性。⑹培养学生综合运用知识解决实际问题的能力。

《【实用】数学教学计划锦集7篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【数学教学计划】相关文章:

数学教学计划06-12

数学教学计划08-22

初中数学教学计划10-07

(优秀)数学教学计划07-05

【热门】数学教学计划06-14

数学教学计划【精】06-15

【精】数学教学计划06-15

数学教学计划【荐】06-15

数学教学计划【精华】07-06

小学数学教学计划06-12

文章代写服务

资深写手 · 帮您写文章

品质保证、原创高效、量身定制满足您的需求

点击体验

【实用】数学教学计划锦集7篇

  时光在流逝,从不停歇,我们又将迎来新的教学工作,我们要好好计划今后的教育教学方法。怎样写教学计划才更能吸引眼球呢?下面是小编为大家收集的数学教学计划7篇,欢迎阅读与收藏。

【实用】数学教学计划锦集7篇

数学教学计划 篇1

  本学期担任高一(9)(10)两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了必须的难度,为把本学期教学工作做好,制定如下教学工作计划。

  一、指导思想:

  使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。透过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本潜力。

  3.提高数学地提出、分析和解决问题(包括简单的实际问题)的潜力,数学表达和交流的潜力,发展独立获取数学知识的潜力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的.一些数学模式进行思考和作出决定。

  5.提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。

  6.具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学好处,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、教学目标.

  (一)情意目标

  (1)透过分析问题的方法的教学,培养学生的学习的兴趣。

  (2)带给生活背景,透过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维潜力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

  (二)潜力要求

  1、培养学生记忆潜力。

  (1)透过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (3)透过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆潜力。

  2、培养学生的运算潜力。

  (1)透过概率的训练,培养学生的运算潜力。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算潜力。

  (3)透过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性潜力。

  (4)透过一题多解、一题多变培养正确、迅速与合理、灵活的运算潜力,促使知识间的透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算潜力。

数学教学计划 篇2

  一、学生情况:

  从上学期的教学观察与测试结果看,这两个班学生的学习态度较端正,基础差,跟不上教学进度的多。受应试教育观念的影响,师生习惯于接受性学习,自主、合作、探究的风气尚未形成。作业习惯抄袭,勤思好问的少。从抽查的情况看,学生对要理解记忆的知识掌握得不够好,读题、理解题意的能力弱,综合分析题目信息,确定解题思路、方法的经验不足,答题书写随意,格式不规范。上学期期末考试班级成绩差距不大,优秀率比期中考试大大提升。为此新学期的数学教学要积极尝试自主、合作、探究学习,注意培养学生的.学习兴趣和习惯品质,努力提高综合成绩,争取更大的提高。

  二、教材情况:

  本学期是本年级学生三年级学习阶段的第二学期。新授课程主要有相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组、数据的收集、整理与描述。现行教材、教学大纲要求学生从身边的实际问题出发,乘坐"观察"、"思考"、"探究"、"讨论"、"归纳"之舟,去探索、发现数学的奥妙,用学到的本领去解决"复习巩固"、"综合运用"、"拓展探索"等不同层次的问题。教师在灵活选用现有教材的基础上,应适度引用新例,把三年级数学各单元的知识明晰化、条理化、规律化,激励学生自主、合作、探究学习,培养学习兴趣和习惯品质。

  三、教学目标

  知识技能目标:学习平行线的有关知识,掌握平面直角坐标系的画法,学会二元一次方程组、不等式及不等式组的解法,能够绘制简单的统计图表。同时进一步提高学生几何作图能力。过程方法目标:学会观察和分析几何图形,发现图形的特征和图形之间存在的关联,学会总结规律。初步建立方程思想,学会使用代数式表示数量及数量之间的关系。态度情感目标:认识生活,感知生活,领悟数学是为生活服务。班级教学目标:优秀率:35%;合格率:60%。

  四、教学措施

  1、认真研读新课程标准,钻研教材,精选习题,精心备课,做好教案,上好新课。同时仔细批改作业,作好辅导,发现问题及时解决作认真总结成功与失败的经验和原因。

  2、充分利用现代化教学设施制作教学道具,设置教学情境,结合日常生活,由浅入深,循序渐进。引导学生主动加入课堂学习和讨论,积极参与知识的探究与规律的总结。

  3、营造民主、和谐、平等、自主的学习氛围,引导学生进行合作探究、交流和分享发现的快乐。从而体会到学习的乐趣,激发学生的学习热情。

  4、精心设计探究主题,引导学生学会发散思维,培养学生创造性思维的能力,实现一题多解、举一反三、触类旁通。

  5、开展分层教学模式,成立互助学习小组,以优带良,以优促后。同时狠抓中等生,辅导后进生,实现共同进步。

数学教学计划 篇3

  一、教材编排特点及重点训练项目

  新的学期,本册教材对于教学内容的编排和处理,是以整套实验教材的编写思想、编写原则等为指导,力求使教材的结构符合教育学、心理学的原理和学生的年特征,继续体现前几册实验教材中的风格与特点。本册教材仍然具有内容丰富、关注学生的经验与体验、体现知识的形成过程、鼓励算法及解决问题的策略多样化、改变学生的学习方式,体现开放性的教学方法等特点。同时,由于教学内容的不同,本册教材还具有下面几个明显的特点。

  1、改进小数乘、除法计算的编排,体现计算教学改革的理念,培养学生的数学素养。

  2、改进简易方程的教学安排,加强了探索性和开放性,发展学生的数学思维能力。

  3、提供丰富的空间与图形的教学内容,注重动手实践与自主探索,促进学生空间观念的发展。

  4、加强统计与概率内容的教学,发展学生的统计观念,逐步形成从数学的角度进行思考问题的思维习惯。

  5、有步骤地渗透数学思想方法,培养学生数学思维能力和解决问题的能力。

  6、情感、态度、价值观的培养渗透于教学中,用数学的魅力的和学习的收获激发学生的学习兴趣与内在动机。

  重点训练项目:1.小数乘、除法;2.简易方程;3.多边形的面积。

  二、学生学情

  因为新学期本班学生我还不是很了解,我想在不久的将来,我会摸熟摸透的。我会尽量调动学生的学习兴趣,让学生主动积极地学习数学,养成良好的学习习惯。

  本期重点是进一步培养和提高学生的合作能力;提高学生提出问题、分析问题、解决问题的能力。同时继续培养学生的良好的学习习惯。

  三、教学目标

  1、比较熟练地进行小数乘法和除法的笔算。

  2、在具体情境中会用字母表示数,理解等式的`性质,会用等式的性质解简易的方程,用方程表示简单情境中的等量关系并解决问题。

  3、探索并掌握平行四边形、三角形、梯形的面积公式。

  4、能辨认从不同方位看到的物体的形状和相对位置。

  5、理解中位数的意义,会求数据的中位数。

  6、体验事件发生的等可能性以及游戏规则的公平性,会求一些事件引起的可能性;能对简单事件发生的可能性性作出预测,进一步体会概率在现实生活中的作用。

  7、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

  8、初步了解数字编码的思想方法,培养发现生活中的数学的意识,初步形成观察、分析及推理的能力。

  9、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

  10、养成认真作业、书写整洁的良好习惯。

  四、创新教学设计

  1、转变观念,采用'激励性、自主性、创造性'教学策略,以问题为线索,恰当运用教材、媒体、现实材料突破重点、难点,变多讲多练,为精讲精练,真正实现师生互动、生生互动,从而调动学生积极主动学习,提高教与学的效益。

  2.不增减课程和课时,不提高要求,不购买其他复习资料,不留机械、重复、惩罚性作业和作业总量不超过规定时间,

  3.通过教学,对学生的学习态度和学习方法、学习纪律等方面提出始终一贯,科学而严格的要求。

  4.转变教学方法。在数学教学中,教师必须将'重视结论'的教学转变为'重视过程'的教学,注重再现知识产生、形成的过程,引导学生去探索、去发现。

  5.在课堂上开展小组合作学习,让学生在一起摆摆、拼拼、说说,让学生畅所欲言,互相交流,减少学生的心理压力,充分发挥学生的主题性,培养学生的创新意识和实践能力。

  6.在教学中注意采用开放式教学,培养学生根据具体情境选择适当方法解决实际问题的意识。如通过一题多解、一题多变、一题多问、一题多编等途径,拓宽学生的知识面,沟通知识之间的内在联系,培养学生的应变能力。

  五、教学进度:

  第1周:P1-7第11周:期中测试

  第2周:P8-14第12周:P68-74

  第3周:P15-21第13周:P75-81

  第4周:P22-28第14周:P82-88

  第5周:P29-32第15周:P89-95

  第6周:P33-39第16周:P96-102

  第7周:P40-46第17周:P103-109

  第8周:P47-53第18周:P110-119

  第9周:P54-60第19周:期末复习

  第10周:P61-67第20周:期末复习

  第21周:期末考试

数学教学计划 篇4

  一、指导思想

  根据义务教育数学课程标准的基本理念,数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的思维能力和创新能力方面的不可替代的作用。让学生在数学学习中体会数学的价值,增强理解数学和应用数学的信心;初步学会运用数学的思维方式去观察和分析现实社会、去解决日常生活中的问题,进而形成勇于探索、勇于创新的科学精神;获得适应未来社会生活和进一步发展所必需的数学知识和必要的应用技能。

  二、学情分析

  在经过了一学年的数学学习后,基本知识、技能方面基本上已经达到学习的目标,对学习数学有着一定的兴趣,乐于参加学习活动中去。特别是一些动手操作、需要合作完成的学习内容都比较感兴趣。但是对于计算还是会出现个别偏慢,易出错等粗心问题.在遇到思考深度较难的问题时,有依赖心理,畏难情绪。这个学期我应该使已经基本形成的兴趣再接再厉的保持,并逐步引导思维的发展、成功体验所获得的乐趣。 本学期要继续抓好养成教育,使全体学生都能得到不同水平、不同程度的发展和提高,以培养学生的学习兴趣为工作重心。

  三、教材分析

  本学期教材内容包括下面一些内容:长度单位, 100以内的加减法,角的初步认识,表内乘法,观察物体,认识时间,数学广角(搭配一)和数学实践活动量一量比一比。

  四、 教学目标

  (一)知识和技能方面

  1、初步认识长度单位厘米和米,初步建立1米、1厘米的长度观念,知道1米=100厘米;初步学会用刻度尺量物体的长度(限整厘米);初步形成估计物体长度的意识。

  2、掌握100以内笔算加、减法的计算方法,能够正确地进行计算。初步掌握100以内笔算加、减法的估算方法,体会估算方法的多样性。

  3、初步认识线段,会量整厘米线段的长度;初步认识角和直角,知道角的各部分名称,会用三角板判断一个角是不是直角;初步学会画线段、角和直角。

  4、知道乘法的含义和乘法算式中各部分的名称,熟记全部乘法口诀,熟练地口算两个一位数相乘。

  5、能辨认从不同的位置观察到的简单物体的形状。

  6、使学生会读写几时几分,初步建立时间观念。使学生知道“l时=60分”,学会一些有关时间的简单计算。

  (二)数学思考方面

  通过结合学生日常生活中的简单事例,让学生运用操作、实验、猜测等直观手段解决问题,向学生渗透简单排列与组合的数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。

  (三)解决问题方面

  1、经历从生活中发现并提出问题、解决问题的过程,体验数学与日常生活的密切联系,感受数学在日常生活中的作用。

  2、了解同一问题可以有不同的解决办法。

  3、有与同学合作解决问题的经验。

  4、初步学会表达解决问题的大致过程和结果。

  (四)情感与态度方面

  1、在他人的'鼓励和帮助下,对身边与数学有关的某些事物有好奇心,能积极参与生动、直观的教学活动。

  2、在他人的鼓励和帮助下,能克服在数学活动中遇到的某些困难,获得成功的体验,有学好数学的信心。

  3、经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性。

  4、在他人的指导下,能够发现数学活动中的错误,并及时改正。

  5、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

  6、养成认真作业、书写整洁的良好习惯。

  7、通过实践活动,体验数学与日常生活的密切联系。

  五、教学措施

  1、从整体上把握教学目标。根据课程标准,结合具体的教学内容准确把握教学的深度,防止加重学生的学习负担。

  2、体现学生的主体性,注重学法渗透。教师要把课堂中更多的时间留给学生探索、交流和练习。

  3、注意培养学生的语言表达能力和逻辑思维能力。重视让学生体验知识的形成过程。

  4、注重培养学生的计算能力和解决问题的能力。努力将学生所学的数学知识与学生的生活和学习中的实际问题联系起来。激发起学生对数学的兴趣,培养学以致用的意识。

  5、注意适当渗透一些数学的思想和方法,以利于学生对某些数学内容的理解。

  6、注意教学的开放性,培养学生的创新意识和实践能力。课本中的一些例题和习题的编排,突出了思考过程,教师在教学时,要引导学生暴露思维过程,鼓励学生多角度思考问题。

  7、精心设计教案,注重多媒体的应用,使学生学得愉快,学得轻松,觉得扎实。

  8、渗透德育,注重培养学生良好的学习习惯和独立思考、克服困难的精神。

数学教学计划 篇5

  Ⅰ.教学内容解析

  本节课的教学内容,是指数函数的概念、性质及其简单应用.教学重点是指数函数的图像与性质.

  这是指数函数在本章的位置.

  指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数.它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践.指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础.因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程.

  指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义.

  Ⅱ.教学目标设置

  1.学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念.

  2.学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小.

  3.学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法.

  4.在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力.

  Ⅲ.学生学情分析

  授课班级学生为南京师大附中实验班学生.

  1.学生已有认知基础

  学生已经学习了函数的概念、图象与性质,对函数有了初步的认识.学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力.学生已有研究一次函数、二次函数等初等函数的直接经验.学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯.

  2.达成目标所需要的认知基础

  学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力.

  3.难点及突破策略

  难点:1. 对研究函数的一般方法的认识.

  2. 自主选择底数不当导致归纳所得结论片面.

  突破策略:

  1.教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段.

  2.组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思.

  3.对猜想进行适当地证明或说明,合情推理与演绎推理相结合.

  Ⅳ.教学策略设计

  根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式.通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段.

  学生的自主学习,具体落实在三个环节:

  (1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念.

  (2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升.

  (3)性质应用阶段,学生自主举例说明指数函数性质的应用.

  研究函数的性质,可以从形和数两个方面展开.从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明.

  Ⅴ.教学过程设计

  1.创设情境建构概念

  师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系.你能用函数的观点分析下面的例子吗?

  师:大家知道细胞分裂的规律吗?(出示情境问题)

  [情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的关系?

  [情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%.如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系?

  [师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=0.84x.

  师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗?

  〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?

  [设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系.引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示.初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构.指数范围扩充到实数后,关注x∈R时,y=ax是否始终有意义,因此规定a>0.a≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义.为了使指数函数与对数函数能构成反函数,规定a≠1.此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”.

  [师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax.

  [教学预设]学生能举出具体的例子——y=3x,y=0.5x….如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现.进而提出这类函数一般形式y=ax.

  方案1:

  生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))

  师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)

  生:函数y=0.5x,y= x,y=(-2)x,y=1x…

  师:板书学生举例(停顿),好像有不同意见.

  生:底数不能取负数.

  师:为什么?

  生:如果底数取负数或0,x就不能取任意实数了.

  师:我们已经将指数的取值范围扩充到了R,我们希望这些函数的定义域就是R.

  (若没有学生注意到底数的取值范围,可引导学生关注例举函数的定义域.若有同学提出情境中函数的定义域应为N+,师:我们已经将指数的取值范围扩充到了R,函数y=2x和y=0.84x中,能否将定义域扩充为R?你们所举的例子中,定义域是否为R?)

  师:这些函数有什么共同特点?

  生:都有指数运算.底数是常数,自变量在指数位置.

  (若有学生举出类似y=max的例子,引导学生观察,它依然具有自变量在指数位置的特征.而刻画这一特点的最简单形式就是y=ax,从而初步建立函数模型y=ax,初步体会基本初等函数的作用.)

  师:具备上述特征的函数能否写成一般形式?

  生:可以写成y=ax(a>0).

  师:当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)

  方案2:

  生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))

  师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)

  生:函数y=0.5x,y= x,…

  师:这些函数的自变量是什么?它们有什么共同特点?

  生:(可用文字语言或符号语言概括)都有指数运算.底数是常数,自变量在指数位置.可以写成y=ax.

  师:y=ax中,自变量是x,底数a是常数.以上例子的不同之处,是底数不同.那你觉得底数的取值范围是什么呢?

  生:底数不能取负数.

  师:为什么?

  生:如果底数取负数或0,x就不能取任意实数了.

  师:为了研究的方便,我们要求底数a>0.当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)

  [阶段小结]一般地,函数y=ax(a>0且a≠1)称为指数函数.它的定义域是R.

  [意图分析]概念教学应当让学生感受形成过程,了解知识的来龙去脉,那种直接抛出定义后辅以“三项注意”的`做法剥夺了学生参与概念形成的过程.此处不宜纠缠于y=22x是否为指数函数等细枝末节.指数函数的基本特征是自变量出现在指数上,应促使学生对概念本质的理解.指数函数概念的形成,经历了一个由粗到细,由特殊到一般,由具体到抽象的渐进过程,这样更加符合人们的认知心理.

  2.实验探索汇报交流

  (1)构建研究方法

  师:我们定义了一个新的函数,接下来,我们研究什么呢?

  生:研究函数的性质.

  〖问题2你打算如何研究指数函数的性质?

  [设计意图]学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.在此认知基础上,引导学生自己提出所要研究的问题,寻找研究问题的方法.开始的问题较宽泛,教师要缩小问题范围,用提示语口头提问启发.教师应充分尊重学生的思维个性,提供自主探究的平台,通过汇报交流活动达成共识实现殊途同归.中学阶段,特别是高一新授课阶段,提倡学生以形象思维作为抽象思维的支撑.

  [师生活动]师生经过讨论,解决启发性提示问题,确定研究的内容与方法.

  [教学预设]学生能够根据已有知识和经验,在教师的启发引导下,明确研究的内容以及研究的方法.部分学生会提出先作出具体函数图象,观察图象,概括性质,并进而归纳出一般函数的图象的分布特征等性质.另一部分学生可能从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.

  师:(稍等片刻)我们一般要研究哪些性质呢?

  生:变量取值范围(定义域、值域)、单调性、奇偶性.

  师:(板书学生回答)怎样研究这些性质呢?

  生:先画出函数图象,观察图象,分析函数性质.

  生:先研究几个具体的指数函数,再研究一般情况.

  师:板书“画图观察”,“取特殊值”

  (若没有学生提出从特殊到一般的思路.师:底数a的取值不同,函数的性质可能也会有不同.一次函数y=kx(k≠0)中,一次项系数k不同,函数性质就不同.底数a可以取无数多个值,那我们怎么办呢?)

  (若有学生通过对y=2x解析式的分析,得到了性质,并提出从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.师:你的想法也很有道理,不妨试一试.(仍引导学生从具体指数函数图象入手.))

  [意图分析]学习的过程就是一个不断地提出问题、解决问题的过程.提出问题比解决问题更重要,给学生提供由自己提出问题、确定研究方法的机会,逐渐学会研究问题,促进能力发展.

  (2)自主探究汇报交流

  师:我们确定了要研究的对象和具体做法,下面可以开始研究指数函数的性质了.

  〖问题3选取数据,画出图象,观察特点,归纳性质.

  [设计意图]若直接规定底数取值,对于为什么要以y=2x,y=3x,y=0.5x为例,为什么要根据底数的大小分类讨论,缺乏合理的解释,学生对于图象的认识是被动的.若在探究前经讨论确定底数取值,由于学生认知水平的差异,仍可能会造成部分学生被动接受.学生自主选择底数,虽有得到片面认识的可能,但通过讨论交流,学生能相互验证结论,仍能得到正确认识.并且学生能在过程中体会数据如何选择,了解研究方法.

  由于描点作图时列举点的个数的限制,学生对x→∞时函数图象特征缺乏直观感受.而且由于所举例子个数的限制,学生对于归纳的结论缺乏一般性的认识.教师应利用绘图软件作出底数连续变化的图象 ,验证猜想.

  数形结合、从特殊到一般的思维方法是概括归纳抽象对象的一般思维方法,本节课的重点是通过对指数函数图象性质的研究,总结研究函数的一般方法,应充分发动学生参与研究的每个过程,得到直接体验.

  [师生活动]学生选取不同的a的值,作出图象,观察它们之间的异同,总结指数函数的图象特征与函数性质.

  [教学预设]学生通过观察图象,发现指数函数y=ax(a>0且a≠1)的性质.教师用实物投影仪展示学生所画图象,学生根据具体函数图象说明具体函数性质.在学生说明过程中,教师引导学生对结论进行适当的说明,进而引导学生归纳一般指数函数的性质.教师引导学生关注列表描点作图的过程,引导学生通过反思过程,并通过动态图象验证猜想,促进学生体会数形结合的分析方法.教师尊重生成,但需引导学生区别指数函数本身的性质与指数函数之间的性质.其中⑥⑦不强加于学生.对于⑥,要引导学生在同一坐标系中画出图象,启发学生观察底数互为倒数的指数函数的图象,先得到具体的例子.对于⑦,在例1第3小题中,会有学生提出利用不同底数指数函数图象解决,可顺势利导,也可布置为课后作业,继续研究.

  生:自主选择数据,在坐标纸上列表作图,列出函数性质.

  师:(巡视,必要时参与讨论,及时提示任务,待大部分学生有结论后,鼓励学生交流,请学生汇报.)有条理地整理一下结论,讨论交流所得.(同时用实物投影仪展示学生所画图象.若没有投影仪,用几何画板作出图象.)

  生:(可能出现的情况)(1)在两个坐标系中画图;(2)所取底数均大于1;(3)两个底数大于1,一个底数小于1;(4)关于y轴对称的两个指数函数.

  师:(过程性引导)底数你是怎么取的?你是怎样观察出结论的?在列表过程中,你有什么发现吗?为什么要在两个坐标系中画图?为什么不也取两个底数小于1?

  师:(用彩笔描粗图象,故意出错)错在哪里?为什么?

  生:指数函数是单调递增的,过定点(0, 1).

  师:(引导学生规范表述,并板书)指数函数在(-∞, +∞)上单调递增,图象过定点(0, 1).

  师:指数函数还有其它性质吗?

  师:也就是说值域为(0, +∞).

  生:指数函数是非奇非偶函数.

  师:有不同意见吗?

  生:当0

  (其它预设:

  (1)当a>1时,若x>0,则y>1;若x<0,则y<1.

  当00,则y<1;若x<0 y="">1.

  (2)学生画出y=2x和y=3x图象,得出函数递增速度的差异.

  (3)画出y=2x和y=0.5x图象,得到底数互为倒数的指数函数图象关于y轴对称.)

  师:(板书学生交流结果,整理成表格.注意区分“函数性质”与“函数之间的关系”.若有学生试图说明结论的合理性,可提供机会.)大家认为底数a>1或0

  [阶段小结] 指数函数y=ax(a>0且a≠1)具有以下性质:

  ①定义域为R.

  ②值域为(0, +∞).

  ③图象过定点(0, 1).

  ④非奇非偶函数.

  ⑤当a>1时,函数y=ax在(-∞, +∞)上单调递增;

  当0

  ⑥函数y=ax与y=()x (a>0且a≠1)图象关于y轴对称.

  ⑦指数函数y=ax与y=bx(a>b)的图象有如下关系:

  x∈(-∞, 0)时,y=ax图象在y=bx图象下方;

  x=0时,两图象相交;

  x∈(0,+∞)时,y=ax图象在y=bx图象上方.

  [意图分析]通过探究活动,使学生获得对指数函数图象的直观认识.学生观察图象,是对图形语言的理解;根据图象描述性质,是将图形语言转化为符号或文字语言.对函数的理解,是建立在三种语言相互转化的基础上的.在交流汇报过程中,一方面要通过对探究较深入学生的具体研究过程的剖析,总结提升学习方法,优化学习策略;另一方面要关注部分探究意识与能力都薄弱的学生的表现,鼓励他们大胆发言,激励他们主动参与活动,让全体学生成为真正的学习主体.自主探究活动能充分激发学生的相互学习能力,能有效帮助学生突破难点.

  3.新知运用巩固深化

  (方案一)(分析函数性质的用途)

  师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?

  师:函数的定义域是函数的基础,是运用性质的前提.值域是研究函数最值的前提.具备奇偶性的函数,可以利用对称性简化研究.指数函数过定点(0, 1),说明可以将常数1转化为指数式,即1=20=30=…那么函数单调性有什么用呢?

  生:可以求最值,可以比较两个函数值的大小.

  师:那你能举出运用指数函数单调性比大小的例子吗?(提示:既然是运用指数函数单调性,那应该有指数式.)

  生:(举例并判断大小.)

  师:你考察了哪个指数函数?怎么想到的?(规范表述)

  师:以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.(出示例1)

  (方案二)

  师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?

  师:(口述并板书)你能比较32与33的大小吗?

  生:直接计算比较.

  师:那比较30.2与30.3的大小呢?能不能不计算呢?

  生:利用函数y=3x的单调性.

  师:能具体说明吗?(引导学生规范表达)我们再试一试.

  (出示例1)

  【例1】比较下列各组数中两个值的大小:

  ①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.

  [设计意图] 引导学生运用指数函数性质.对于 32与33的大小比较,学生更可能计算出幂的值直接比较.变式后,学生可能作差或作商比较,转化为比较30.1与1的大小,进而运用指数函数单调性,也可能直接运用单调性.初步运用新知解决问题,注重题意理解,扩大知识迁移,感悟解题方法,达到对新知巩固记忆,加深理解.

  [师生活动]学生板演,教师组织学生点评.

  [教学预设] ①②两题,学生能运用指数函数单调性解决.②题学生可能得到错误答案,教师可组织相互点评,规范表达,正确运用性质.③学生可能运用不同方法,应给予充分的时间,并在具体问题解决后引导学生总结一般方法.

  师:(引导学生规范表达)你考察了哪个指数函数?根据函数的什么性质?

  师:(对③的引导)你考虑利用哪个函数?是y=1.5x还是y=0.8x?这两个函数有什么关联?(引导学生画出图象,从形上提示:图象有什么关联?)

  生:它们都过点(0, 1).

  师:也就是说,可以将1转化为指数形式,即1=1.50=0.80.那接下来呢?

  生:比较1.50.3,0.81.2和1的大小.

  师:我们找到了一个比大小的中间量.以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.

  【例2】

  ①已知3x≥30.5,求实数x的取值范围;

  ②已知0.2x<25,求实数x的取值范围.

  [设计意图]指数函数单调性的逆用,同时考查指数函数的定义域.

  4.概括知识总结方法

  〖问题4本节课我们学习了哪些知识?你还学会了哪些方法?

  [设计意图] 回顾所学内容,深化认知.开放式小结,不同学生有不同的收获.

  [师生活动]学生发言总结,交流所得.

  [教学预设]

  通过本节课对指数函数图象和性质的研究,我们获得了以下知识和方法:

  ①指数函数的定义与性质;

  ②研究函数的一般方法和步骤.

  师:本节课我们学习了什么知识?

  生:指数函数的定义和性质.

  师:回顾我们的研究过程,我们是怎样研究指数函数的?

  生:先确定研究的内容:定义域、值域、单调性、奇偶性和其它性质.

  生:然后从几个具体的指数函数开始,画出图象,列出性质,最后得到一般情况.

  师:这是一种从特殊到一般的研究方法.研究指数函数的方法,也是研究函数的一般方法,今后我们还会运用这样的方法研究新的函数.

  [意图分析]课堂总结不是对所学知识的简单回顾,应让学生在知识、方法和策略上多层次地整理,促进学生理解所用学习方法的合理性与普遍性,使学生获得知识与能力的共同进步.

  5.分层作业,因材施教

  (1)感受理解:课本第54页,习题2.2(2):1,2,3,4;

  (2)思考运用:运用今天的研究方法,你还能得到指数函数的其它性质吗?

  [设计意图]分层布置作业,“感受理解”面向全体学生,旨在掌握指数函数的图象与性质.“思考运用”提供学生运用函数研究的一般方法自主研究的机会.

  Ⅵ.教后反思回顾

  一、对于指数函数概念的认识

  指数函数是一种函数模型,其基本特征是自变量在指数位置.底数取值范围有规定,使得这一模型形式简单又不失本质.不必纠结于“y=22x是否为指数函数”,把重点放在概念的合理性的理解以及体会模型思想.

  二、对于培养学生思维习惯的考虑

  在学生自主探索的过程中,教师应注意培养学生良好的思维习惯.实际上,选择底数a的数据的大小和数量,需要对指数函数的性质有预判;从列表到作图的过程中,都可以感受到指数函数单调性等性质;观察并归纳性质,既需要特殊到一般的推理模式,也应养成有序进行观察和归纳的良好的思维习惯.对所归纳的指数函数的性质,应根据学生已有的知识水平或教学要求进行证明或合理的说明.学生不仅学到了数学知识,也初步体验了研究问题的基本方法.

  三、关于设计定位的反思

  本节课的教学设计,力图体现因材施教原则。不同的学情下,教师应采用不同的教学策略.如果学生基础相对薄弱,问题的提出可以分层次进行。另外,注意通过“你是怎么想的?”“你同意他的意见吗?为什么”等问话形式,促使学生暴露思维过程.、

数学教学计划 篇6

  一. 教学思想:

  教育学生掌握基础知识与基本技能

  培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

  二. 在教学过程中抓住以下几个环节

  (1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。

  (2) 抓住课堂45分钟,本学期的教学内容共三章

  第二十七章 一元二次方程的应用:

  (一) 列出一元二次方程解应用题

  (二)二次三项式的因式分解

  (三) 分式方程和无理方程

  (四) 简单的`二元二次方程组

  第二十八章相似形:

  (一)图形的放缩与比例线段

  (二)相似三角形

  第二十九章锐角三角比

  (一)锐角的三角比

  (二)解直角三角形的应用

  严格按照教学计划,备课组统一进度,统一练习,进行教学,精心设计每一节课的每一个环节,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量组织学生人人参与课堂活动,使每个学生积极主动参与课堂活动,使每个学生动手、动口、动脑,及时反馈信息提高课堂效益。

  (3)课后反馈。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。

  三. 不断钻研业务,提高业务能力及水平。

  积极参加业务学习,看书、看报,参加学校组织的培训,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更开拓,方法更灵活,手段更先进。

数学教学计划 篇7

  1、重视研究图形的特征,鼓励学生猜想和估计,加强操作,进一步发展学生的空间观念。

  第十册已经教学过长方体和正方体,它们都是由几个平面图形围成的几何体。本册教学两种新的立体图形:圆柱和圆锥。这两种立体图形都是含有曲面的几何体。教材教学时,同以前各册一样,重视加强学生的操作,发展学生的空间观念。教学每一种形体时,都引导学生先观察形体的特征,然后进行一些实验。

  教材鼓励学生联系已有知识对新学习的内容先猜一猜或估一估,在猜测或估计的基础上进行实验和推理,培养学生的学习能力。此外,本册教材在联系实际方面也有所加强。一方面在教学形体概念加强联系周围的实物,另一方面适当增加了实践活动和先测量物体再计算表面积或体积的练习题。

  2、加强看懂和分析简单统计图的训练,注意要求适当。

  本册教材继续加强看懂和分析简单统计图的训练,为此,例题中在统计图后面提出几个问题,让学生看图回答。有的练习题还专门安排看统计图回答问题。考虑到制作简单的统计图对小学生来说并不是很容易的,教材中一方面注意说明制作统计图的一般方法和步骤,另一方面在安排练习时基本上都安排半独立完成的。以免对制作统计图的要求过高。

  3、突出比例的概念,加强知识间的联系。

  正比例关系和反比例关系,实际上是一种函数关系。修订后的教材中,比例知识趋于简化,教学的重点是正、反比例的概念,用比例知识解应用题只保留一些较简单的。本册教材为了突出比例的概念的应用,作了以下几点改进:⑴把比例尺安排到比例的`概念教学之后教学,加强比例尺与比例概念的联系,这样既有助于学生加深理解比例的概念,又便于学生运用比例的知识和解比例的方法来解决有关比例尺的计算问题。

  ⑵教学正比例概念之后接着教学反比例概念并增加两个概念的联系和对比。⑶在比例知识解应用题的最后增加了用不同知识解的练习题。通过这样的教学,可以加强整数、分数运算和比例之间的联系,提高学生灵活运用知识解决实际问题的能力。

  4、加强数学知识的整理,使所学的数学知识系统化。

  本册教材的最后一个单元是总复习,把小学阶段所学的主要内容进行系统的整理和复习,使学生对所学的数学知识得到巩固和加深,计算能力得到进一步提高,更好地达到小学数学教学的目标。本册教材对这一单元的编写作了以下几点改进:

  ⑴把小学的数学内容分为整数和小数、简易方程、分数和百分数、量的计量、几何初步知识、比和比例、简单的统计七部分,依次分别复习。⑵在复习每一部分知识时,注意加强知识间的内在联系。⑶选用适当的方式帮助学生回忆并整理所学的数学基础知识。⑷在练习中既注意基本的训练,又注意适当加强灵活和综合运用知识的练习,以利于进一步提高学生的计算能力和解题能力。

  5、继续加强能力的培养

  本册教材继续加强能力的培养,做法与前几册基本相同,另外还结合本册特点加强灵活运用知识和综合运用知识的能力的培养。

  ⑴培养分析、比较和综合能力。⑵培养抽象、概括能力。⑶培养判断、推理能力。⑷培养迁移类推能力。⑸培养学生思维的灵活性和敏捷性。⑹培养学生综合运用知识解决实际问题的能力。